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Abstract

The discovery  of  the  Nitrate-Reducing Fe(II)-Oxidizing  (NRFeOx)  microbial metabolism,

which couples the oxidation of Fe(II) to the reduction of nitrate (NO ) using organic matter

or carbon dioxide (CO ) as carbon source, was a major milestone in microbial ecology

(Straub et al. 1996). NRFeOx microorganisms play an essential role on a global scale in

three of the most important biogeochemical cycles: iron (Fe), carbon (C) and nitrogen (N) (

Kappler et al.  2021, Huang et al.  2021). In addition, these organisms participate in the

mobilization or stabilization of organic carbon, as well as in CO fixation, thus contributing

to the reduction of atmospheric CO (Kappler et al.  2021). Finally,  the activity of these

microorganisms is key to remove the pollutant NO from aquifers, which is one of the

major  worldwide environmental  issues since many environments  exceed the maximum

regulatory concentration (50 mg L-1) (Kazakis et al. 2020 ).

A plethora of NRFeOx microorganisms have been described in the last decades. However,

most of these microorganisms have been reclassified as chemodenitrifiers. That is to say,

Fe(II) is not enzymatically oxidized but indirectly by the reactive nitrogen species produced

during denitrification (Fig. 1 ). In fact, only in three cultures so far, named KS, BP and AG,

has the presence of true NRFeOx metabolism been unequivocally demonstrated (Straub et

al. 1996, Huang et al. 2021b, Jakus et al. 2021b).
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Cultures KS, BP and AG have been studied thoroughly in the past years, analyzing the rate

and  mechanism by  which  these  communities  carry  out  autotrophic  NRFeOx.  Different

omics studies have revealed that cultures KS, BP and AG consist of a mixture of bacterial

species, which collaborate in order to grow under autotrophic NRFeOx conditions. Each

culture is dominated by a novel candidate species of the genus Ferrigenium (Huang et al.

2022) capable of fixing CO  and oxidizing Fe(II), but which requires flanking species to

complete denitrification (Huang et al. 2021b, He et al. 2016, Huang et al. 2021a).

Interestingly,  these  communities  not  only  carry  out  NRFeOx  using  dissolved  Fe(II)  as

energy source (Straub et al. 1996, Huang et al. 2021b, Jakus et al. 2021b), but they can

also oxidize Fe(II) minerals, the main form in which Fe(II) can be found in the Earth's crust

(Huang et al. 2021). In fact, Fe(II)-bearing minerals are thought to be the main drivers of

NO  reduction in subterranean environments (Huang et al.  2021), which has additional

ecological consequences. NRFeOx microorganisms can trigger the turnover of the Fe(II)-

bearing minerals, resulting in the mobilization of mineral structural elements such as S, P,

C or contaminant heavy metals and the precipitation of Fe(III) minerals at circumneutral pH

(Weber et al. 2001, Jakus et al. 2021a).

Here, we will present a review of the insights learned from the three NRFeOx autotrophic

cultures and discuss their ecological role, their importance in biogeochemical cycles, and

their potential biotechnological applications.
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Figure 1.  

Overview of  the  three  different  types  of  interaction  between nitrate-reducing  bacteria  and

Fe(II). (A) Autotrophic NRFeOx obtain carbon from CO  and oxidize Fe(II) enzymatically. (B)

Mixotrophic  NRFeOx  require  additional  organic  carbon  as  a  carbon  source,  and  Fe(II)

oxidation  has  some  enzymatic  component  (although  there  may  also  be  some  abiotic

component). (C) Chemodenitrifiers require organic carbon and have no enzymatic component

of  Fe(II)  oxidation.  The position of  the minerals  (orange) relative to cells  (black)  indicates

whether or not cell encrustation is expected. Image from Bryce et al. (2018).
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