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Abstract

Astrobiologists seek to find life beyond Earth. The “Holy Grail” of Astrobiology research is

to discover evidence of a second genesis of life – an origin of life that was independent

from life’s origin on Earth. No formal consensus on the possibility for a second genesis of

life exists, and opinions about the probability range from near zero to near unity. An extra-

terrestrial  example  of  life  would  help  answer  this  question  and settle  the  quandary  of

whether life is common in the Universe or exceedingly rare. Quantifying the “ordinariness”

of life has far reaching philosophical implications that could even inform us about the future

of intelligent, technology-wielding life on Earth (Bostrom 2007).

Life on Mars, one of our closest planetary neighbors, was considered a forgone conclusion

as recently as the mid 20  century. What else besides an advanced civilization cultivating

crops could have been responsible  for  the telescopically  observed network of  “canals”

scarring its red surface? The “Advanced Martian Civilization” hypothesis had support from

preeminent  scientists,  such  as  Giovanni  Schiaparelli  and  Percival  Lowell,  but  was

relegated to the realm of pseudoscience when data from the Mariner spacecrafts in the

1970s  failed  to  reveal  any  evidence  for  such  civilizations.  There  is  still  no  convincing

evidence  for  life  on  Mars;  however,  several  studies  have  at  least  raised  one  or  two

eyebrows (Mazur et al. 1978, McKay et al. 1996, Ruff and Farmer 2016).

The Mariner missions ushered in the era of modern space exploration at Mars, and with it

an earnest search for life. In 1976, shortly after the Mariner missions, the Viking I & II

landers delivered “positive” results from their Labeled Release (LR) experiments. Oxidants

in the martian regolith are the generally accepted explanation for these results, but some

argue that life is the most parsimonious explanation for the Viking data (Levin and Straat
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2016). We still do not know if life existed, or exists, on Mars, but Mars was once habitable

for the forms of life that took root on early Earth and certain places on Mars likely remain

habitable (Davila et al. 2010, Ehlmann et al. 2016). Its potential habitability and proximity to

Earth have kept Mars centered in the crosshairs of Astrobiological research for decades.

However, icy ocean worlds – Titan, Europa and Enceladus – have garnered increasing

attention from the Astrobiology community (National Academies of Sciences and Medicine

2022), partially because any evidence for life on these worlds has a much higher chance of

representing a second genesis whereas life on Mars could have potentially originated on

Earth (or vice versa).

The problems we face in the search for life on Mars today mirror those that confronted

Schiaparelli and Lowell: we do not have data of sufficient quality to answer the question

definitively. One major difference is that Schiaparelli and Lowell had their prior probability

for the expectation of life on Mars set at what must have been a fairly high value. By

contrast, decades of null results for evidence of life on Mars have tuned our expectations

such that all abiogenic explanations for any piece of would-be-evidence-for-life must be

rigorously rejected before biotic explanations can be considered (e.g., Ruff and Farmer

(2016), Oehler and Etiope (2017)). Perhaps one day, incontrovertible evidence for life on

Mars will be found that will open the floodgates for a reinterpretation of evidence that, at

present, is too dubious to consider. Until then, a high bar is rightly set for the standard of

evidence (Neveu et al. 2018). If evidence of life exists on Mars, it is apparent that it will not

be easy to find.

NASA developed a strategic exploration arc to hone in on the most likely places to find

evidence of life on Mars. The strategy goes:

1. Follow the water;

2. Explore habitability;

3. Seek signs of life.

The “Follow the water” theme characterized missions from Mars Global Surveyor in 1996

to the Mars Atmospheric and Volatile EvolutioN orbiter in 2013. “Explore habitability” and

“Seek  signs  of  life”  have  overlapped,  beginning  in  2007  with  the  Phoenix  lander  and

persisting to the present with the Perseverance rover at the Jezero Crater delta.

Despite  technological  and  philosophical  advances  in  Astrobiology  and  the  overarching

principles guiding NASA missions, a coherent and standard strategy for quantifying the

probability of finding life in an arbitrarily chosen environment does not exist. For example,

when we land in a deltaic system on Mars we do not know, and in fact do not have a

strategy for knowing, which specific outcrop, or rocks within in an outcrop, will have the

highest probability of containing signs of past life. What would such a “signs of life search

strategy” look like?

In our recent paper (Warren-Rhodes et al.  2023), we propose that building a library of

probability-of-life maps at nested spatial scales across many terrestrial-analog sites could

be one  way  to  address  this  question.  Building  probability  maps  relies  on  extensive
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microbial  ecologic  surveying,  and  can  help  us  understand  whether  recognizable  and

predictable patterns characterize the distribution of terrestrial biosignatures. At our field site

in  Salar  de Pajonales,  Chile,  we found that  photosynthetic  endolithic  communities,  the

subject  of  our  study,  followed such a pattern.  Their  locations could be predicted using

artificial  intelligence  (AI)  models  with  an  order  of  magnitude  greater  accuracy  than  a

random search. Our study lays out a methodological framework for assessing a terrestrial

analog site that combines geology, statistical ecology, and AI. The long-term vision is for

the Astrobiology community to adopt and improve upon this strategy, and to build up a

library of probability maps across many planetary-analog field sites. With a library of many

biosignature probability maps across a diverse suite of analog sites, we can hope to extract

trends and patterns in biosignature distributions that generalize across sites and that could

inform the search for life in novel planetary environments.
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